Читати книжки он-лайн » Наука, Освіта 🧪📚🧑‍🔬 » Таємниці походження всесвіту

Читати книгу - "Таємниці походження всесвіту"

165
0

Шрифт:

-
+

Інтервал:

-
+

Добавити в закладку:

Добавити
1 ... 31 32 33 ... 87
Перейти на сторінку:
Боте й Бекер припустили, що це випромінювання було якимось новим різновидом гамма-променів. У Парижі Ірен Жоліо-Кюрі, дочка уславленої жінки-фізика Марії Кюрі, разом із чоловіком Фредеріком відтворили результати Боте й Бекера та більш детально дослідили нове випромінювання. Зокрема вони з’ясували, що під час бомбардування парафінової мішені воно вибивало протони з неймовірною енергією.

Це спостереження чітко засвідчило, що це випромінювання не могло бути гамма-променями. Чому?

Відповідь напрочуд проста. Якщо ви кинете у вантажівку, що їде на вас, зернятко попкорну, то навряд чи її зупините чи бодай розіб’єте вікно. Це через те, що попкорн, навіть якщо кинути його з великою енергією, несе маленький імпульс, оскільки важить мало. Щоб зупинити вантажівку, треба сильно змінити її імпульс, оскільки, навіть рухаючись повільно, вона залишається важкою. Щоб зупинити вантажівку чи збити з неї великий предмет, треба кидати велику каменюку.

Аналогічно, щоб вибити з парафіну важку частинку на кшталт протона, гамма-промінь, який складається з безмасових фотонів, повинен нести дуже велику енергію (настільки, щоб імпульс кожного окремого фотона був достатньо великим, щоб вибити важкий протон), а жоден із відомих процесів ядерного розпаду не давав достатньої для цього хоча б за порядком енергії.

Як не дивно, подружжя Жоліо-Кюрі (вони дотримувалися сучасних поглядів й обоє взяли одне й те саме прізвище з дефісом), схоже, як і Дірак, погребувало запропонувати для пояснення отриманих даних варіант із новою елементарною частинкою, оскільки протони, електрони й фотони були не лише добре знайомі, а й досі їх вистачало для пояснення всіх відомих явищ, зокрема екзотичних квантових феноменів, пов’язаних з атомами. Тож Ірен та Фредерік не висунули припущення, яке нині здається очевидним, що, можливо, у розпадах, що їх відкрили Боте й Бекер, виникає нова нейтральна масивна частинка. На жаль, аналогічна боязкість завадила Жоліо-Кюрі заявити права на відкриття позитрона, попри те, що вони реально спостерігали його в ході своїх експериментів ще до того, як Карл Андерсон дещо пізніше повідомив про своє відкриття.

Просунути справу далі випало фізикові Джеймсу Чедвіку. Чедвік, поза всяким сумнівом, мав чудовий нюх на фізику, а от його політична проникливість гостротою не вирізнялася. Закінчивши 1913 року зі ступенем магістра Манчестерський університет, де він працював із Резерфордом, він отримав стипендію, яка дозволяла йому навчатися будь-де. Тож він відправився до Берліна, щоб працювати з Ґейґером. Кращого наставника годі було шукати, і він почав займатися важливими дослідженнями радіоактивних розпадів. На жаль, під час його перебування в Німеччині розпочалася Перша світова війна, і наступні чотири роки Чедвік провів у таборі для інтернованих.

Урешті-решт він повернувся до Кембриджу (куди на той час переїхав Резерфорд), щоб закінчити під його керівництвом докторську дисертацію. Після цього Чедвік залишився працювати з Резерфордом та допомагати керувати Кавендиською лабораторією. Хоча він знав про результати Боте й Бекера та навіть відтворив їх, лише після того, як один із його студентів розповів йому про результати Жоліо-Кюрі, Чедвік, виходячи з наведеної вище енергетичної аргументації, переконався, що спостережуване випромінювання мало бути спричинене новою нейтральною частинкою й масою, порівнянною з масою протона, яка має міститися в атомних ядрах – ідея, яка багато років викристалізовувалася в них із Резерфордом.

Чедвік відтворив та розширив експерименти Жоліо-Кюрі, бомбардуючи інші мішені, окрім парафіну, для вивчення вихідних протонів. Він підтвердив не лише те, що енергетика зіткнень виключала те, що їхнім джерелом могли бути гамма-промені, а й що сила взаємодії нових частинок із ядрами значно перевищувала передбачену для гамма-променів.

Чедвік часу не гаяв. 1932 року, уже через два тижні після початку експериментів, він надіслав у часопис «Nature» лист під заголовком «Можливе існування нейтрона», після чого надіслав детальнішу статтю до Королівського товариства. Так було відкрито нейтрон, на частку якого, як ми тепер знаємо, припадає більша частина маси важчих ядер, а отже, і більша частина маси наших із вами тіл.

За це відкриття три роки по тому, 1935-го, він отримав Нобелівську премію. Одначе справедливість теж, можна сказати, восторжествувала, адже троє з тих, чиї експерименти уможливили результати Чедвіка, але хто при цьому не зумів ідентифікувати нейтрон, також удостоєні цієї нагороди за інші роботи. Боте здобув Нобелівську премію 1954 року за роботу з використання збігів між спостережуваними подіями в різних детекторах для вивчення детальної природи ядерних та атомних феноменів. Ірен і Фредерік Жоліо-Кюрі, яким не вистачило дещиці, щоб зробити два інші відкриття, відзначені Нобелівськими преміями, здобули 1935 року цю нагороду з хімії за відкриття штучної радіоактивності, яке пізніше стало ключовим інгредієнтом у розробці як ядерної енергетики, так і ядерної зброї. Що цікаво, лише після Нобелівської премії Ірен дістала у Франції посаду професора. Враховуючи дві Нобелівські премії, здобуті її матір’ю, Марією, загалом Кюрі набрали п’ять Нобелівок – найбільшу кількість нагород, що їх коли-небудь отримали члени однієї родини.

Після свого відкриття Чедвік узявся за вимірювання маси нейтрона. Його перша оцінка, 1933 року, дала масу, дещо меншу за суму мас протона й електрона. Це підкріплювало ідею, що, можливо, нейтрон є зв’язаним станом цих двох частинок, а різниця в масі, виходячи з відношення Ейнштейна E = mc2, спричинена втратою енергії на їх зв’язування. Проте після кількох інших результатів вимірювань, одержаних іншими групами, подальший аналіз, який провів Чедвік рік по тому з використанням ядерної реакції, індукованої гамма-променями, що дозволило виміряти всі енергії з дуже високою точністю, чітко засвідчив, що нейтрон важчий за суму мас протона й електрона, хоч і не набагато, менш ніж на 0,1 %.

Кажуть, що «близько» враховується лише під час кидання підків чи ручних гранат, проте близькість мас протона й нейтрона рахується дуже й дуже сильно. Це одна з ключових причин нашого з вами існування.

1896 року Анрі Беккерель відкрив радіоактивність урану, а вже через три роки Ернест Резерфорд виявив, що радіоактивність буває двох типів, які він позначив альфа-й бета-променями. Іще через рік було відкрито гамма-промені, і 1903-го Резерфорд підтвердив, що вони є новою формою радіації, давши їм їхню назву. 1900 року Беккерель визначив, що промені за бета-розпаду насправді є електронами, які, як ми знаємо нині, виникають у результаті розпаду нейтрона.

За бета-розпаду нейтрон розділяється на протон та електрон, що, як

1 ... 31 32 33 ... 87
Перейти на сторінку:

 Увага!

Сайт зберігає кукі вашого браузера. Ви зможете в будь-який момент зробити закладку та продовжити читання книги «Таємниці походження всесвіту», після закриття браузера.

Коментарі та відгуки (0) до книги "Таємниці походження всесвіту"